

 Quality Improvement and

 Release Management in FOSS projects

 Martin Michlmayr <tbm@cyrius.com>
 University of Cambridge

 This work has been funded in part by Intel and Google.

 Objectives for today

 What is quality?

 What is quality assurance (QA)?

 FOSS and QA

 The problems of release management

 ... and a possible solution

 Quality

 Everyone knows, but ...
 Hard to define
 Hard to measure

 Definitions of quality:
 Fitness for purpose
 Attributes of quality: efficiency, reliability, usability, extendability,

portability, reusability, maintainability

 Different aspects:
 User perception
 Developer perception

 What is Quality Assurance?

 Traditional Quality Assurance (QA)

 Does what it should do (meets the specification)

 Does what others do as good or better as others (meets the "Industrial
Standard")

 QA begins before the implementation!
 You cannot "add" quality later

 QA is not (just) testing

 ISO defines QA as all "planned and systematic activities" (to ensure
quality)

 Quality and FOSS

 (Figure by James
Howison)

 We will focus on "typical" (traditional) FLOSS projects:
 Distributed development
 Done by volunteers

 Eric S. Raymond (1999): The Cathedral and the Bazaar
 Linus’ law

 Quality and FOSS

 Quality is often high
 peer review (Cathedral and the Bazaar)
 World domination

 ... but not always
 Many small, unsuccessful projects
 example: SourceForge has over 100,000 projects
 Big projects have problems too
 Contrast to QA as "planned and systematic activities"

 Interviews: identifying quality issues

 Interviews with members of FOSS projects

 3 main areas:
 leadership: benevolent dictator, team

 release cycle:
 "release when it’s ready", time based
 fast vs slow, development vs user release
 beta cycle, release candidates

 company involvement

 Interviews: underlying topics

 Processes and infrastructure
 Communication
 Bug tracking systems
 Contributing to the project

 Success
 What is success?

 Relation of success and quality?
 Success: more volunteers
 Contribute, Improve
 More quality
 Cathedral to bazaar

 Release Management

 Scope: small vs big projects

 Small projects: often don’t know much about release management and
user requirements.

 Large projects: Coordination is hard.

 Problems of Release Management

 Examples:

 Debian: "we release when it’s ready" as a way of saying "never"

 The Linux kernel: from the "Linux model" (odd/even) to... chaos(?)

 Mutt: stable versions severely out of date (until recently)

 Feature-based Releases

 In large projects: there are always more features; you can always
improve something.

 Planning of features is hard (cf. volunteer nature)

 Freezes announced out of the blue -> "thundering herd of patches"
problem (Ted Ts’o)

 Project is late, people think they have time to cram in their features:
project is even later (repeat)

 Time-based Releases

 Relatively novel concept

 GNOME as the successful example (1.x vs 2.x cycle)

 The idea: don’t talk about features, talk about time.

 Give a detailed plan (time line), give people deadlines.

 Review and possible revert functionality that is not ready!

 Reasons for the Time-Based Model

 In large project, there is always some development (bug fixes, minor
features)

 FOSS projects don’t need to justify new releases as much as companies

 You get your features/fixes out quicker; get quicker/more (useful)
feedback.

 You can still talk about features; just not commit to anything.

 Possible Incentives

 End-users: get fixes periodically, each version is a gradual increase.

 Companies: predictable releases.

 Developers: development speed and motivation increases because of
feedback, coordination is easier

 Lessons learned

 Quality in FOSS in an important area
 Some projects have realized this
 Debian: http://qa.debian.org/
 KDE: http://quality.kde.org/
 GNOME: http://developer.gnome.org/projects/bugsquad/
 It is important to think about quality and to
 Find ways to measure quality
 Find ways to improve quality
 Find ways to automate quality
 Document quality practices
 Researchers and FOSS developers can work together

	Local Disk
	file:///Users/john/Documents/blank.txt

